Face Verification and Recognition

Framework:

The similarity between two faces Ia and Ib can be unified in the following formulation:

M[W(F(S(Ia))), W(F(S(Ib)))]

in which S is synthesis operation (e.g., face alignment, frontalization), F is robust feature extraction, W is transformation subspace learning, M means face matching algorithm (e.g., NN, SVM, metric learning).

Paper:

Survey:

Dataset:

LFW: http://vis-www.cs.umass.edu/lfw/

IJB-A: (free upon request) https://www.nist.gov/itl/iad/image-group/ijba-dataset-request-form

FERET: (free upon request) https://www.nist.gov/itl/iad/image-group/color-feret-database

CMU Multi-Pie: (not free) http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

CASIA WebFace Database: (free upon request) http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html

MS-Celeb-1M: https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/

MegaFace: (free upon request) http://megaface.cs.washington.edu/dataset/download_training.html

Cross-Age Celebrity Dataset: http://bcsiriuschen.github.io/CARC/

VGG face: http://www.robots.ox.ac.uk/~vgg/data/vgg_face/